ПРИГОДНОСТЬ БЕТОННЫХ СМЕСЕЙ НА ПОЛЫХ МИКРОСФЕРАХ ДЛЯ 3D-ПЕЧАТИ В СТРОИТЕЛЬСТВЕ

Научная статья
DOI:
https://doi.org/10.18454/mca.2020.19.3
Выпуск: № 3 (19), 2020
Опубликована:
29.07.2020
PDF

Аннотация

В работе исследованы особенности реологических свойств высокопрочных легких бетонов на полых микросферах средней плотностью 1400 кг/м3. На основе как стандартизированных методик исследования подвижности бетонной смеси, так и дополнительных критериев сохраняемости установлено, что обладают высокой пригодностью для 3D-печати в строительстве. Показано, что исследуемые бетонные смеси при варьировании содержания пластифицирующей добавки, могут обеспечивать сохранение объема более 90 % при подвижности до 135 мм по диаметру расплыва конуса. Содержание пластификатора не более 1,2 % от массы цемента обеспечивает для исследуемых смесей вариативность интенсивности разжижения.

Полный текст только в pdf

Список литературы

  • Mechtcherin V., Nerella V.N., Will F., Näther M., Otto J., Krause M. Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing // Automation in Construction. 2019. Vol. 107. 102933. doi: 10.1016/j.autcon.2019.102933.

  • Buswella R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research // Cement and Concrete Research. 2018. Vol. 112. P. 37-49. doi: 10.1016/j.cemconres.2018.05.006.

  • Malaeb Z., AlSakka F., Hamzeh F. 3D Concrete Printing: Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups // 3D Concrete Printing Technology. 2019. P. 115-136. doi: 10.1016/B978-0-12-815481-6.00006-3.

  • Li Zh., Wang L., Ma G. Method for the Enhancement of Buildability and Bending Resistance of Three-Dimensional-Printable Tailing Mortar // 3D Concrete Printing Technology. 2019. P. 161-179. doi: 10.1186/s40069-018-0269-0.

  • Kazemian A., Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture // Construction and Building Materials. 2017. Vol. 145. P. 639-647.

  • Suiker A.S.J., Salet T.A.M., Lucas S.M., Wolfs R.J.M. Elastic buckling and plastic collapse during 3D concrete printing // Cement and Concrete Research. 2020. Vol. 135. 106016. doi: 10.1016/j.conbuildmat.2017.04.015.

  • Jayathilakage R., Rajeev P., Sanjayan J.G. Yield stress criteria to assess the buildability of 3D concrete printing // Construction and Building Materials. 2020. Vol. 240. 117989. doi: 10.1016/j.conbuildmat.2019.117989.

  • Inozemtcev A.S., Duong T.Q. Technical and economic efficiency of materials using 3D-printing in construction on the example of high-strength lightweight fiber-reinforced concrete // E3S Web of Conferences. 2019. Vol. 97. 02010. doi: 10.1051/e3sconf/20199702010.

  • Патент РФ 2515450. Высокопрочный легкий бетон / Королев Е.В., Иноземцев А.С. Заявл. 11.10.2012. Опубл. 10.05.2014.

  • Иноземцев А.С., Королев Е.В. Особенности реологических свойств высокопрочных легких бетонов на полых микросферах // Вестник МГСУ. 2013. № 6. С. 100-108.

  • Иноземцев А.С., Королев Е.В., Зыонг Т.К. Реологические особенности цементно-минеральных систем, пластифицированных поликарбоксилатным пластификатором // Региональная архитектура и строительство. 2019. № 3 (40). С. 24-34.

  • Inozemtcev A.S. High-strength lightweight concrete mixtures based on hollow microspheres: technological features and industrial experience of preparation // IOP Conference Series: Materials Science and Engineering. 2015. Vol. 71. P. 012028. doi: 10.1088/1757-899X/71/1/012028.