Printability of concrete mixtures filled by hollow microspheres for 3D-printing in construction

Research article
Issue: № 3 (19), 2020


The features of the rheological properties of high-strength lightweight concrete filled by hollow microspheres with an average density of 1400 kg/m3 were investigated in the work. Based on both standardized methods for studying the mobility of concrete mixtures and additional criteria for buildability, it has been established that studied mixtures have high printability in construction. It is shown that the high-strength lightweight concrete mixtures, with varying the concentration of the plasticizer, can keep a volume after extrusion of more than 90 % and have the flow diameter of up to 135 mm. The content of the plasticizer is not more than 1.2 % by weight of the cement provides variability of the intensity of liquefaction.

Full text is available in pdf only


  • Mechtcherin V., Nerella V.N., Will F., Näther M., Otto J., Krause M. Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing // Automation in Construction. 2019. Vol. 107. 102933. doi: 10.1016/j.autcon.2019.102933.

  • Buswella R.A., Leal de Silva W.R., Jones S.Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research // Cement and Concrete Research. 2018. Vol. 112. P. 37-49. doi: 10.1016/j.cemconres.2018.05.006.

  • Malaeb Z., AlSakka F., Hamzeh F. 3D Concrete Printing: Machine Design, Mix Proportioning, and Mix Comparison Between Different Machine Setups // 3D Concrete Printing Technology. 2019. P. 115-136. doi: 10.1016/B978-0-12-815481-6.00006-3.

  • Li Zh., Wang L., Ma G. Method for the Enhancement of Buildability and Bending Resistance of Three-Dimensional-Printable Tailing Mortar // 3D Concrete Printing Technology. 2019. P. 161-179. doi: 10.1186/s40069-018-0269-0.

  • Kazemian A., Yuan X., Cochran E., Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture // Construction and Building Materials. 2017. Vol. 145. P. 639-647.

  • Suiker A.S.J., Salet T.A.M., Lucas S.M., Wolfs R.J.M. Elastic buckling and plastic collapse during 3D concrete printing // Cement and Concrete Research. 2020. Vol. 135. 106016. doi: 10.1016/j.conbuildmat.2017.04.015.

  • Jayathilakage R., Rajeev P., Sanjayan J.G. Yield stress criteria to assess the buildability of 3D concrete printing // Construction and Building Materials. 2020. Vol. 240. 117989. doi: 10.1016/j.conbuildmat.2019.117989.

  • Inozemtcev A.S., Duong T.Q. Technical and economic efficiency of materials using 3D-printing in construction on the example of high-strength lightweight fiber-reinforced concrete // E3S Web of Conferences. 2019. Vol. 97. 02010. doi: 10.1051/e3sconf/20199702010.

  • Патент РФ 2515450. Высокопрочный легкий бетон / Королев Е.В., Иноземцев А.С. Заявл. 11.10.2012. Опубл. 10.05.2014.

  • Иноземцев А.С., Королев Е.В. Особенности реологических свойств высокопрочных легких бетонов на полых микросферах // Вестник МГСУ. 2013. № 6. С. 100-108.

  • Иноземцев А.С., Королев Е.В., Зыонг Т.К. Реологические особенности цементно-минеральных систем, пластифицированных поликарбоксилатным пластификатором // Региональная архитектура и строительство. 2019. № 3 (40). С. 24-34.

  • Inozemtcev A.S. High-strength lightweight concrete mixtures based on hollow microspheres: technological features and industrial experience of preparation // IOP Conference Series: Materials Science and Engineering. 2015. Vol. 71. P. 012028. doi: 10.1088/1757-899X/71/1/012028.