СТРОИТЕЛЬНАЯ MEXAHИKA / STRUCTURAL MECHANICS

DOI: https://doi.org/10.18454/mca.2023.40.2

ИССЛЕДОВАНИЕ КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ В МНОГОСВЯЗНЫХ ПЛАСТИНАХ МЕТОДОМ ГРАНИЧНЫХ УРАВНЕНИЙ

Научная статья

Дадобоев А.И.^{1,} *, Низомов Д.Н.²

¹ Таджикский технический университет имени академика М.С. Осими, Душанбе, Российская Федерация ² Институт геологии, сейсмостойкого строительства и сейсмологии Национальной академии наук Таджикистана, Душанбе, Таджикистан

* Корреспондирующий автор (dadaboev61[at]inbox.ru)

Аннотация

Изложена математическая модель анализа напряженно-деформированное состояние многосвязной области на основе метода граничных интегральных уравнений. Полученные граничные уравнения позволяют исследовать плоские задачи теории упругости при различных воздействиях. В результате сплайн аппроксимации граничных параметров система граничных интегральных уравнений преобразуется в систему алгебраических уравнений, где неизвестными являются компоненты перемещений и напряжений на контуре исследуемого объекта. Рассмотрено упругое изотропное двумерное тело с внутренней областью, ограниченной контуром. Предполагается, что на одной части границы могут быть заданы напряжения, а на другую – перемещения. Решение двумерных задач в напряжениях сводится к интегрированию дифференциальных уравнений равновесия. Предлагаемый алгоритм реализован на примере двухсвязной области.

Ключевые слова: граничные уравнения, многосвязная область, аппроксимация граничных параметров, фундаментальное решение, концентрации напряжений, численное интегрирование.

A STUDY OF STRESS CONCENTRATION IN MULTILINK PLATES BY THE METHOD OF BOUNDARY EQUATIONS

Research article

Dadoboev A.I.^{1,} *, Nizomov D.N.²

¹Tajik Technical University named after Academician M.S. Osimi, Dushanbe, Russian Federation

² Institute of Geology, Earthquake-Resistant Construction and Seismology of the National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan

* Corresponding author (dadaboev61[at]inbox.ru)

Abstract

A mathematical model for analysing the stress-strain state of a multilink area based on the method of boundary integral equations is presented. The obtained boundary equations allow to study plane problems of elasticity theory under various influences. As a result of spline approximation of boundary parameters, the system of boundary integral equations is transformed into a system of algebraic equations, where the unknowns are components of displacements and stresses on the contour of the studied object. An elastic isotropic two-dimensional body with an internal area limited by a contour is examined. It is assumed that stresses can be given on one part of the boundary and displacements on the other part. The solution of two-dimensional problems in stresses is reduced to the integration of differential equations of equilibrium. The proposed algorithm is implemented on the example of a two-linked area.

Keywords: boundary equations, multilinked area, approximation of boundary parameters, fundamental solution, stress concentrations, numerical integration.

Введение

В качестве объекта исследования рассмотрим диафрагму жесткости, которая является одним из основных несущих элементов зданий, обеспечивающих их сейсмостойкость. Диафрагма жесткости сплошная или с проемами, как двумерное тело, находится в плосконапряженном состоянии. Область, которая состоит из замкнутых контуров (рис. 1) называется связной [1]. Разрезы, проведенные по линиям, соединяющим точки внешнего контура с соответствующими точками во внутренних контурах, позволяют многосвязную область превратить в односвязную. На рис.1 стрелками указаны направления обхода контуров. При положительном направлении обхода по границе область должна оставаться слева, откуда следует, что обход контура совершается против часовой стрелки, а контуры отверстий – по часовой стрелке [2].

Рисунок 1 - Многосвязная область DOI: https://doi.org/10.18454/mca.2023.40.2.1

Дифференциальные уравнения равновесия

Рассмотрим упругое изотропное двумерное тело с внутренней областью Ω, ограниченной контуром Г. Предполагается, что на одной части границы могут быть заданы напряжения, а на другую – перемещения. Решение двумерных задач в напряжениях сводится к интегрированию дифференциальных уравнений равновесия [3]

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \gamma_x = 0 \underline{\dots} \cdot \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \gamma_y = 0 \tag{1}$$

вместе с условием совместности

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\left(\sigma_x + \sigma_y\right) = -v_0\left(\frac{\partial \gamma_x}{\partial x} + \frac{\partial \gamma_y}{\partial y}\right) \tag{2}$$

и граничными условиями (рис. 1, в)

$$p_x = \sigma_x n_x + \tau_{yx} n_y, \dots p_y = \tau_{xy} n_x + \sigma_y n_y \tag{3}$$

Здесь: γ_x , γ_y – компоненты объемной силы; $\nu_0 = (1+\nu)$ – в случае плоского напряженного состояния; $\nu_0 = 1/(1-\nu)$ – в случае плоской деформации; ν – коэффициент Пуассона; $n_x = \cos\alpha_x$, $n_y = \cos\alpha_y$ – направляющие косинусы нормали к границе; α_x , α_y – углы между нормалью и осями x и у соответственно; p_x , p_y – заданные на поверхности тело нагрузки (напряжения).

Система из трех уравнений (1) и (2) с тремя неизвестными напряжениями σ_x , σ_y и τ_{xy} , с учетом граничных условий (3), позволяет определять напряженное состояние двумерной конструкции от заданной нагрузки на контуре Γ и объемные силы, заданные внутри области Ω . В случае, когда объемные силы γ_x и γ_y постоянны, правая часть в (2) обратится в ноль, то можно заметить, что распределение напряжений в плоской задаче не зависит от свойств материала. Следовательно, уравнения (1) и (2), при γ_x , γ_y = const, могут применяться как при упругой, так и неупругой работе материала конструкции. Когда учитываются только силы тяжести, где $\gamma_x = 0$, $\gamma_y = -\rho g = -\gamma_0$, ρ – плотность материала, g – ускорение свободного падения, γ_0 – объемный вес, решение плоской задачи упрощается введением новой функции $\phi(x,y)$ (функция Эри), которая связана с компонентами напряжения зависимостями [3]

$$\sigma_x = \frac{\partial^2 \varphi}{\partial y^2} + \gamma_0 y, \cdots \sigma_y = \frac{\partial^2 \varphi}{\partial x^2} + \gamma_0 y, \cdots \tau_x y = -\frac{\partial^2 \varphi}{\partial x \partial y}$$
(4)

Видно, что выражения (4) удовлетворяют уравнения (1) при любых значениях функции $\phi(x,y)$, но действительным решением задачи будет то, которое удовлетворяет также уравнению совместности (2), представленное в виде

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\left(\sigma_x + \sigma_y\right) = 0 \tag{5}$$

Подставив (4) в (5), получаем

$$\frac{\partial^4 \varphi}{\partial x^4} + 2 \frac{\partial^4 \varphi}{\partial x^2 \partial y^2} + \frac{\partial^4 \varphi}{\partial y^4} = 0$$
(6)

Таким образом, решение двумерной задачи в напряжениях, когда объемной силой является вес тела, сводится к рассмотрению (6) с учетом граничных условий (3). Бигармоническое уравнение (6) представляет собой условие совместности деформаций, записанное через функцию напряжений $\varphi(x,y)$. В общем, из решения (6) определяется $\varphi(x,y)$, а затем поле напряжений вычисляются по формулам (4).

Если учесть, что любую бигармоническую функцию можно представить с помощью аналитических функций комплексного переменного [4], то становится возможным комплексное представление решений плоской задачи теории упругости. Заменив переменные x, y сопряженными комплексными переменными

$$z = x + iy, \quad \bar{z} = x - iy \tag{7}$$

бигармоническое уравнение (1.6) можно представить в виде

$$\frac{\partial^4 \varphi}{\partial z^2 \partial z^2} = 0 \tag{8}$$

которое имеет решение

$$\varphi(z,\bar{z}) = \frac{1}{2} [\bar{z}\phi(z) + z\bar{\phi}(\bar{z}) + \psi(z) + \bar{\psi}(\bar{z})]$$
(9)

где φ(z), ψ(z) – аналитические функции, φ (z), ψ (z) – функции, сопряженные с функциями φ(z) и ψ(z). Комплексное представление перемещений и напряжений осуществляется по формулам

$$u_{x} + iu_{y} = \frac{1}{2\mu} \left[\omega \phi(z) - z \overline{\phi'(z)} - \overline{\chi(z)} \right],$$

$$\sigma_{x} + \sigma_{y} = 2 \left[\phi'(z) + \overline{\phi'(z)} \right] = 4 \operatorname{Re} \phi'(z),$$

$$\sigma_{y} - \sigma_{x} + 2i\tau_{xy} = 2 \left[\overline{z} \phi''(z) + \chi'(z) \right],$$
(10)

где $\omega = 3$ -4v, v – коэффициент Пуассона. В случае плоского напряженного состояния величину ω следует заменить на $\omega = (3-v)/(1+v)$, $\chi(z)=\psi'(z)$. Следовательно, решение задачи при заданных внешних напряжениях (1.3), приложенных на границе Г, сводится к отысканию в области Ω двух аналитических функций $\phi(z)$, $\psi(z)$, связанных граничными условиями. Методы теории функций комплексного переменного, основанные на интегралах типа Коши и конформного преобразования, нашли применение в задачах механики сплошной среды благодаря фундаментальным работам Г.В. Колосова, Н. И. Мусхелишвили, Л.Д. Галина, И.Н. Векуа, И.Н. Снеддон и др.

Если принять за основные неизвестные функции перемещения u_x (x,y) и u_y (x,y), то заменяя в дифференциальных уравнениях (1.1) компоненты напряжений через компоненты деформаций согласно обобщенному закону Гука, а затем с использованием геометрических уравнений Коши, представляя компоненты деформаций через компоненты перемещений, получаем систему дифференциальных уравнений в перемещениях (уравнения Ламе), которая в условиях плоской деформации записывается в виде [11], [12]

$$G_{1}\frac{\partial^{2}u_{x}}{\partial x^{2}} + G\frac{\partial^{2}u_{x}}{\partial y^{2}} + G_{2}\frac{\partial^{2}u_{y}}{\partial x\partial y} + \gamma_{x} = 0$$

$$G_{1}\frac{\partial^{2}u_{y}}{\partial y^{2}} + G\frac{\partial^{2}u_{y}}{\partial x^{2}} + G_{2}\frac{\partial^{2}u_{x}}{\partial x\partial y} + \gamma_{y} = 0$$
(11)

где G₁=2G(1-v)/(1-2v), G₂=G/(1-2v), G – модуль упругости при сдвиге. Заменив в (11) коэффициент Пуассона v на v/(1+v), получаем уравнения, соответствующие плоскому напряженному состоянию

$$G_1^* \frac{\partial^2 u_x}{\partial x^2} + G \frac{\partial^2 u_x}{\partial y^2} + G_2^* \frac{\partial^2 u_y}{\partial x \partial y} + \gamma_x = 0,$$

$$G_1^* \frac{\partial^2 u_y}{\partial y^2} + G \frac{\partial^2 u_y}{\partial x^2} + G_2^* \frac{\partial^2 u_x}{\partial x \partial y} + \gamma_y = 0,$$
(12)

здесь G_1 *=2G(1-v), G_2 *=G(1+v)/(1-v). Следует отметить, что здесь нет необходимости в использования уравнении совместности деформаций (2), так как мы имеем два уравнения с двумя неизвестными $u_x(x,y)$ и $u_y(x,y)$.

В данной работе уравнения (11) и (12) будут использованы для составления граничных интегральных уравнений. Система уравнений (11) или (12), записанная для бесконечной области позволяет получать фундаментальные решения.

Фундаментальные решения Кельвина

Фундаментальное решение системы уравнений (7), определяющее поле перемещений в неограниченной изотропной упругой среде от действия единичных сил е_x и е_y, строится на основе решения Кельвина (Ляв, 1935). Решение Кельвина в условиях плоской деформации можно записать в виде [11]

$$u_{xx}^{*} = -a \left[(3 - 4v) \ln r_{pk} - \cos^{2} \beta_{1} \right]$$

$$u_{xy}^{*} = u_{yx}^{*} = a \cos \beta_{1} \cos \beta_{2}$$

$$u_{yy}^{*} = -a \left[(3 - 4v) \ln r_{pk} - \cos^{2} \beta_{2} \right]$$
(13)

здесь a=1/8 π G(1-v), r_{pk}=[(x- ξ)²+(y- η)²] – расстояние между точками k(x,y) и p(ξ , η), β_1 , β_2 – углы наклона радиусвектора r_{pk} к осям x и у соответственно в точке p(ξ , η). Компоненты перемещений (13) удовлетворяют системе дифференциальных уравнений

$$G_{1}\frac{\partial^{2}u_{x}^{*}}{\partial x^{2}} + G\frac{\partial^{2}u_{x}^{*}}{\partial y^{2}} + G_{2}\frac{\partial^{2}u_{y}^{*}}{\partial x \partial y} = -\delta(k,p)e_{x},$$

$$G_{1}\frac{\partial^{2}u_{y}^{*}}{\partial y^{2}} + G\frac{\partial^{2}u_{y}^{*}}{\partial x^{2}} + G_{2}\frac{\partial^{2}u_{x}^{*}}{\partial x \partial y} = -\delta(k,p)e_{y},$$
(14)

где $u_{x}^{*}=u_{xx}^{*}+u_{xy}^{*}$, $u_{y}^{*}=u_{yx}^{*}+u_{yy}^{*}$, $G_{1}=2G(1-\nu)/(1-2\nu)$, $G_{2}=G/(1-2\nu)$, G – модуль упругости при сдвиге.

Граничные интегральные уравнения внутренних задач

Граничные интегральные уравнения двумерных задач теории упругости можно получить исходя из тождества Сомильяна [10], полученные на основе теоремы о взаимности работ. Погружая конечную область Ω+Г, с заданными на поверхности Г компонентами напряжений и перемещений, в неограниченное пространство, которое последовательно загружается единичными силами и описывается дифференциальными уравнениями (14), согласно теореме Бетти, получаем

$$\int_{\Gamma} \left(p_x u_{xx}^* + p_y u_{yx}^* \right) d\Gamma + \int_{\Omega} \left(\gamma_x u_{xx}^* + \gamma_y u_{yx}^* \right) d\Omega =$$

=
$$\int_{\Gamma} \left(p_{xx}^* u_x + p_{yx}^* u_y \right) d\Gamma + \int_{\Omega} \delta(p,k) u_x d\Omega,$$
 (15)

здесь и * хх,..., р * ух фундаментальные перемещения и напряжения Кельвина. С учетом свойств дельта-функция Дирака

$$\delta(p,k) = 0$$
 при $p \neq k$, $\delta(p,k) = \infty$ при $p = k$,

$$\int_{\Omega} \delta(p,k) u_x(k) d\Omega(k) = u_x(p), \tag{16}$$

второй интеграл в правой части будет равняться u_x (p), где точка $p(\xi,\eta) \in \Omega$, тогда уравнение (1.21) можно представить в виде

$$u_x(p) = \int_{\Gamma} \left(p_x u_{xx}^* + p_y u_{yx}^* \right) d\Gamma_k - \int_{\Gamma} \left(p_{xx}^* u_x + p_{yx}^* u_y \right) d\Gamma_k + \int_{\Omega} \left(\gamma_x u_{xx}^* + \gamma_y u_{yx}^* \right) d\Omega$$
(17)

где p_x, p_y – поверхностные напряжения, u^*_{xx} , p^*_{xx} перемещения и напряжения, возникающие в точке k(x,y) в направлении оси x от действия единичной сосредоточенной силы, действующей по этой же оси, u^*_{yx} , p^*_{yx} перемещения и напряжения, возникающие в точке k(x,y) в направлении оси y от действия единичной сосредоточенной силы, действующей по оси x. Индекс k в (17) подчеркивает, что переменным интегрирования по контуру являются координаты x,y. Формула (17) определяет перемещения по направления оси x в точке $p(\xi,\eta)$ внутри области Ω при заданных значениях p_x, p_y, u_x , и u_y на контуре, а также объемных сил γ_x и γ_y в области Ω . Проведя аналогичную процедуру от действия единичной сосредоточенной силы, действующей по оси y, получаем

$$u_{y}(p) = \int_{\Gamma} \left(p_{x} u_{xy}^{*} + p_{y} u_{y}^{*} \right) d\Gamma_{k} - \int_{\Gamma} \left(p_{xy}^{*} u_{x} + p_{yy}^{*} u_{y} \right) d\Gamma_{k} + \int_{\Omega} \left(\gamma_{x} u_{xy}^{*} + \gamma_{y} u_{yy}^{*} \right) d\Omega$$
(18)

Граничные интегральные уравнения можно получить из (17) и (18) при предельном переходе, когда точка р(ξ,η) устремится к границе Γ, а при этом точка k(x,y) находится на границе.

Таким образом, при переходе точки $p(\xi,\eta)$ к границе области второй интеграл в (17) и (18) понимается в смысле главного значения по Коши, а остальные интегралы в обычном смысле. Следовательно, при $p(\xi,\eta) \in \Gamma$ уравнения (17) и (18) преобразуются в граничные интегральные уравнения

$$u_{x} (1 - c_{xx}) - u_{y}c_{yx} = \int_{\Gamma} \left(p_{x}u_{xx}^{*} + p_{y}u_{yx}^{*} \right) d\Gamma_{k} - \int \left(p_{xx}^{*}u_{x} + p_{yx}^{*}u_{y} \right) d\Gamma_{k} + \int \left(\gamma_{x}u_{xx}^{*} + \gamma_{y}u_{yx}^{*} \right) d\Omega,$$

$$- u_{x}c_{xy} + u_{y} (1 - c_{yy}) = \int_{\Gamma} \left(p_{x}u_{xy}^{*} + p_{y}u_{yy}^{*} \right) d\Gamma_{k} - \int_{\Gamma} \left(p_{xy}^{*}u_{x} + p_{yy}^{*}u_{y} \right) d\Gamma_{k} + \int_{\Omega} \left(\gamma_{x}u_{xy}^{*} + \gamma_{y}u_{yy}^{*} \right) d\Omega.$$
(19)
(20)

Граничные интегральные уравнения (19) и (20) можно представить в матричной форме

$$CU_{p} = \int_{\Gamma} U^{*} P_{k} d\Gamma - \int_{\Gamma} P^{*} U_{k} d\Gamma + \int_{\Omega} \overline{U}^{*} F d\Omega, \qquad (21)$$

где векторы перемещений, поверхностных напряжений и объемных сил представляются в виде

$$\mathbf{U} = \left\{ \begin{array}{c} u_x \\ u_y \end{array} \right\}, \mathbf{P} = \left\{ \begin{array}{c} p_x \\ p_y \end{array} \right\}, \mathbf{F} = \left\{ \begin{array}{c} \gamma_x \\ \gamma_y \end{array} \right\}.$$
(22)

Симметричные матрицы коэффициентов, фундаментальных перемещений и напряжений записываются так:

$$\mathbf{C} = \begin{bmatrix} 1 - c_{xx} & -c_{yx} \\ -c_{xy} & 1 - c_{yy} \end{bmatrix}, \quad \mathbf{U}^* = \begin{bmatrix} u_{xx}^* & u_{yx}^* \\ u_{xy}^* & u_{yy}^* \end{bmatrix}, \quad \mathbf{P}^* = \begin{bmatrix} p_{xx}^* & p_{yx}^* \\ p_{xy}^* & p_{yy}^* \end{bmatrix}, \quad (23)$$

U^{*} – матрица фундаментальных решений, компоненты которых соответствуют точкам внутри области Ω, в отличие от матрицы U^{*}, где компоненты перемещений принадлежат границе Г.

Пример 4.7. Консольная балка-стенка с отверстием под действием горизонтальной нагрузки, равномерно распределенной по вертикальной грани (рис. 2). Применительно к этой задаче система алгебраических уравнений, полученная из системы граничных интегральных уравнений путем сплайновой аппроксимации нулевого порядка, представляется в виде [12]

$$\begin{bmatrix} -E_1 & -F_1 & A_1 & B_1 \\ -G_1 & -H_1 & C_1 & D_1 \end{bmatrix} \begin{cases} P_x \\ P_y \\ U_x \\ U_y \end{cases} = \begin{bmatrix} E_2 & F_2 \\ G_2 & H_2 \end{bmatrix} \begin{cases} P_x^0 \\ P_y^0 \\ P_y^0 \end{cases},$$
(24)

Здесь прямоугольные матрицы E_1, F_1, G_1, H_1 размера $n_e \times n_1$, n_1 – число элементов в опорной грани AB, n_e с общее число элементов, включая элементы на контуре отверстия. Матрицы A_1, B_1, C_1, D_1 – прямоугольные размера $n_e \times n_2$, где $n_2 = n_e - n_1$. Прямоугольные матрицы E_2, F_2, G_2, H_2 , в зависимости от характера заданной нагрузки, могут иметь размер $n_e \times n_3$, где $n_3 \le n_2$. Вектор-столбцы P_x и P_y состоят соответственно из n_1 и n_2 элементов.

Рисунок 2 - Консольная балка-стенка DOI: https://doi.org/10.18454/mca.2023.40.2.2

Примечание: а) - геометрия, б) - схема обхода контура

На основе предлагаемого алгоритма разработана компьютерная программа на языке Фортран и получены результаты численного моделирования. Далее, переходим к анализу результатов, полученных методом граничных уравнений на примере квадратной пластинки с квадратным отверстием, где $a_1 = a_3 = 0,3a$, $a_2 = 0,4a$, при разбивке $4 \times 8 + 4 \times 5 = 52$. Из решения (24) определяются векторы искомых напряжений и перемещений, а затем можно приступить к вычислению нормальных и тангенциальных перемещений и напряжений.

В табл. 1 результаты напряженного состояния на опорной линии АВ пластинки с отверстием сравниваются с аналогичными данными для пластинки без отверстия. В угловых точках А и В напряжения определены по квадратичной аппроксимации после предварительной интерполяции результатов, полученных для узлов сплайна. Сравнение показывает, что в пластинке с отверстием примерно в 1,5 раза увеличивается нормальное напряжение в угловой точке А и касательное напряжение в середине края.

Таблица 1 - Сравнение распределения напряжений на грани

DOI: https:/	//doi.	org/1().18454/mc	a.2023.40.2.3
--------------	--------	--------	------------	---------------

x _i /h		Без отверстия		С отверстием		
	σ _y	τ_{xy}	σ _x	σ _x	τ_{xy}	σ _x
0	-5,1940	-2,5350	-1	-7,6830	-2,5760	-1
1	-2,1900	-1,4700	-0,4493	-2,4380	-1,2650	-1,0890
2	-0,7543	-1,0430	0,1886	0,2487	-1,0060	0,0908
3	-0,2769	-0,9728	0,0692	0,7649	-1,2800	-0,2151
4	0,1092	-0,8989	-0,0273	0,3278	-1,3190	-0,1673
5	0,4850	-0,8289	-0,1213	-0,1588	-1,0550	0,0034
6	0,9331	-0,7493	-0,2333	0,1161	-0,6104	0,0760
7	1,9990	-0,7963	0,0307	1,8420	-0,4456	-0,1340
8	4,0550	-1,0810	0	5,1160	-0,8455	0

На рис. З показан график изменения касательных напряжений на закрепленной грани AB для пластины с отверстием – кривая 1, и для пластины без отверстия – кривая 2. Видно, что наличие отверстия приводит к значительным изменениям в характере распределения касательных напряжений т_{ху}.

Рисунок 3 - Изменение касательного напряжения по длине защемленного края квадратной балки-стенки DOI: https://doi.org/10.18454/mca.2023.40.2.4

Заключение

Не указан.

На основе полученных результатов можно сделать вывод, что разработанные алгоритм численного моделирования на основе метода граничных уравнений и компьютерная программа позволяют исследовать напряженнодеформированное состояние многосвязной области и могут быть использованы для расчета диафрагм жесткости многоэтажных зданий.

Конфликт интересов

Рецензия

Conflict of Interest

Review

Все статьи проходят рецензирование. Но рецензент или автор статьи предпочли не публиковать рецензию к этой статье в открытом доступе. Рецензия может быть предоставлена компетентным органам по запросу. All articles are peer-reviewed. But the reviewer or the author of the article chose not to publish a review of this article in the public domain. The review can be provided to the competent authorities upon request.

Список литературы / References

None declared.

1. Мусхелишвили Н.И. Сингулярные интегральные уравнения / Н.И. Мусхелишвили. — М.: Наука, 1968. — 511 с.

2. Лурье А.И. Теория упругости / А.И. Лурье. — М.: Наука, 1970. — 939 с.

3. Тимошенко С.П. Теория упругости / С.П. Тимошенко, Дж. Гудьер. — М.: «Наука», 1975. — 575 с.

4. Лаврентьев М.А. Методы теории функций комплексного переменного / М.А. Лаврентьев, Б.В. Шабат. — М.: Наука, 1973. — 736 с.

5. Колосов Г.В. Применение комплексной переменной к плоской задаче теории упругости / Г.В. Колосов. — М.-Л.: ГТТИ, 1935.

6. Галин Л.А. Контактные задачи теории упругости / Л.А. Галин. — М.: Гостехиздат, 1953. — 264 с.

7. Векуа И.Н. Обобщенные аналитические функции / И.Н. Векуа. — М.: Наука, 1988. — 512 с.

8. Снеддон И.Н. Классическая теория упругости / И.Н. Снеддон, Д.С. Берри. — М.: Госиздат, 1961. — 219 с.

9. Ляв А. Математическая теория упругости / А. Ляв. — М.-Л.: ОНТ Издательство НКТБ СССР, 1935. — 674 с.

10. Новацкий В. Теория упругости / В. Новацкий. — М.: «МИР», 1975. — 872 с.

11. Низомов Д.Н. Метод граничных уравнений в решении статических и динамических задач строительной механики / Д.Н. Низомов. — М.: Изд-во АСВ, 2000. — 282 с.

12. Низомов Д.Н. Метод граничных уравнений в решении двумерных задач теории упругости / Д.Н. Низомов, А.А. Ходжибоев, О.А. Ходжибоев. — М.: Изд-во АСВ, 2020. — 414 с.

13. Низомов Д. Н. О методах математического моделирования напряженно-деформированного состояния диафрагм жесткости / Д. Н. Низомов, А. И. Дадобоев // Москва, Научно-технический и производственный журнал КШП ОМД. — №5. — 2022. — с. 37-41.

14. Низомов Д. Н. Математическое моделирование задач теории упругости методом граничных уравнений / Д. Н. Низомов, А. И. Дадобоев // Москва, Строительная механика и расчет сооружений. — №5(304). — 2022. — с. 29-32.

Список литературы на английском языке / References in English

1. Muskhelishvili N.I. Singulyarnye integral'nye uravneniya [Singular Integral Equations] / N.I. Muskhelishvili. — M.: Nauka, 1968. — 511 p. [in Russian]

2. Lur'e A.I. Teoriya uprugosti [Theory of Elasticity] / A.I. Lur'e. — M.: Nauka, 1970. — 939 p. [in Russian]

3. Timoshenko S.P. Teoriya uprugosti [Theory of Elasticity] / S.P. Timoshenko, Dzh. Gud'er. — M.: «Nauka», 1975. — 575 p. [in Russian]

4. Lavrent'ev M.A. Metody teorii funkcij kompleksnogo peremennogo [Methods of Complex Variable Theory of Functions] / M.A. Lavrent'ev, B.V. SHabat. — M.: Nauka, 1973. — 736 p. [in Russian]

5. Kolosov G.V. Primenenie kompleksnoj peremennoj k ploskoj zadache teorii uprugosti [Application of a Complex Variable to a Plane Problem of Elasticity Theory] / G.V. Kolosov. — M.-L.: GTTI, 1935 [in Russian].

6. Galin L.A. Kontaktnye zadachi teorii uprugosti [Contact Problems of Elasticity Theory] / L.A. Galin. — M.: Gostekhizdat, 1953. — 264 p. [in Russian]

7. Vekua I.N. Obobshchennye analiticheskie funkcii [Generalized Analytical Functions] / I.N. Vekua. — M.: Nauka, 1988. — 512 p. [in Russian]

8. Sneddon I.N. Klassicheskaya teoriya uprugosti [Classical Theory of Elasticity] / I.N. Sneddon, D.S. Berri. — M.: Gosizdat, 1961. — 219 p. [in Russian]

9. Lyav A. Matematicheskaya teoriya uprugosti [Mathematical Theory of Elasticity] / A. Lyav. — M.-L.: ONT NKTP Publishing House of the USSR, 1935. — 674 p. [in Russian]

10. Novackij V. Teoriya uprugosti [Theory of Elasticity] / V. Novackij. — M.: «MIR», 1975. — 872 p. [in Russian]

11. Nizomov D.N. Metod granichnyh uravnenij v reshenii staticheskih i dinamicheskih zadach stroitel'noj mekhaniki [The Method of Boundary Equations in Solving Static and Dynamic Problems of Structural Mechanics] / D.N. Nizomov. — M.: Publishing house of the DIA, 2000. — 282 p. [in Russian]

12. Nizomov D.N. Metod granichnyh uravnenij v reshenii dvumernyh zadach teorii upru-gosti [The Method of Boundary Equations in Solving Two-Dimensional Problems of Elasticity Theory] / D.N. Nizomov, A.A. Hodzhiboev, O.A. Hodzhiboev. — M.: Publishing house of the DIA, 2020. — 414 p. [in Russian]

13. Nizomov D. N. O metodah matematicheskogo modelirovaniya napryazhenno-deformirovannogo sostoyaniya diafragm zhestkosti [Methods of Mathematical Modeling of the Stress-Strain State of Stiffening Diaphragms] / D. N. Nizomov, A. I. Dadoboev // M. Nauchno-tekhnicheskij i proizvodstvennyj zhurnal KSHP OMD [Scientific, Technical and Production Journal of KSHP OMD]. — №5. — 2022. — p. 37-41 [in Russian].

14. Nizomov D. N. Matematicheskoe modelirovanie zadach teorii uprugosti metodom granichnyh uravnenij [Mathematical Modeling of Problems of Elasticity Theory by the Method of Boundary Equations] / D. N. Nizomov, A. I. Dadoboev // Moscow, Stroitel'naya mekhanika i raschet sooruzhenij [Construction Mechanics and Calculation of Structures]. — №5(304). — 2022. — p. 29-32 [in Russian].